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I. INTRODUCTION

Synthetic aperture radar (SAR) remote sensing [1] of-
fers a number of advantages over optical remote sens-

ing, mainly the all-day, all-weather acquisition capability. 
However, the main drawback of SAR images is the presence 
of speckle, a signal dependent granular noise, inherent of 
all active coherent imaging systems, that visually degrades 

the appearance of images. Speckle may severely diminish 
the performances of automated scene analysis and infor-
mation extraction techniques, as well as it may be harm-
ful in applications requiring multiple SAR observations, 
like automatic multitemporal change detection. For these 
reasons, a preliminary processing of real-valued detected 
SAR images aimed at speckle reduction, or despeckling, is 
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of crucial importance for a number of applications. Such 
a preprocessing, however, should be carefully designed to 
avoid spoiling useful information, such as local mean of 
backscatter, point targets, linear features and textures.

A steadily increasing number of papers specific on 
despeckling has appeared in the literature over the last 
ten years, presumably because the new generation of sat-
ellite SAR systems has dramatically raised the attention 
of researchers in signal processing towards this prob-
lem. The COSMO-SkyMed constellation—four satellites 
launched by the Italian Space Agency (ASI) between 2007 
and 2010—features X-band SAR with low revisit-time; as 
a second generation mission, two additional satellites are 
foreseen in 2014 and 2015. The twin-satellite constellation 
TerraSAR-X/TanDem-X (2007/2010) launched by the Ger-
man Space Agency (DLR) and the upcoming Sentinel-1a/-
1b satellite constellation (2013/2015) from the European 
Space Agency (ESA), which shall extend the EnviSat mis-

sion, complete the European scenario of satellite SAR. Also, 
the Canadian RADARSAT 3 mission is expected in a near 
future, with 3 satellites operating at C-band, to be launched 
in 2017. A thorough overview of past, present and future 
missions can be found in [1].

The most recent advances in despeckling pursue the 
technological objective of giving an extra value to the huge 
amount of data that are routinely collected by current and 
upcoming SAR systems mounted on orbiting platforms. In 
fact, with the exception of applications related to produc-
tion of digital elevation models (DEMs) or interferometric 
phase maps useful for studies of terrain deformation (land-
slides, subsidence, etc.), SAR data do not find the same full 
utilization, as optical data do, by either users’ or scientists’ 
communities. As an example, the functional development 
of efficient techniques for fusion between optical and SAR 
data would constitute an enabling technology that would 
allow a relevant number of new applications to bring  
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benefits both for data providers and for producers of soft-
ware applications. Unfortunately, speckle is the main 
obstacle towards the development of an effective optical-
SAR fusion [2], together with the different acquisition 
geometry of optical and SAR systems.

This article is intended as tutorial on despeckling, rather 
than a simple review of despeckling methods. Therefore, 
emphasis is given to speckle and reflectivity models that are 
used for filtering. The review of methods that are not relying 
on the multiplicative noise model is kept very concise, since 
such methods have not encountered same progresses over 
time as model-based methods have. With only very few 
exceptions, despeckling methods specifically proposed for 
ultrasound images are not reviewed here. In fact, notwith-
standing the similarity of the coherent imaging system, in 
the presence of weak echoes from tissues the additive white 
Gaussian noise (AWGN) introduced by the electronics 
cannot be neglected and the noise model also includes an 
AWGN term [3]. In SAR images, the AWGN term is always 
negligible, compared to the signal-dependent term [4].

Despeckling methods specifically pertaining to polari-
metric SAR are not discussed in this tutorial. Readers inter-
ested to this topic are addressed to the seminal papers by 
Novak and Burl [5], Lee et al. [6] and Touzi and Lopès [7], as 
well as to more recent and developed contributions [8], [9]. 
Also despeckling methods designed to take advantage of 
the availability of a temporal sequence of SAR images, like 
[10], [11], are not addressed here. By default, speckle reduc-
tion is approached as mono-variate, even though a multivari-
ate speckle reduction [12], if applicable, may be preferred.

Only incoherent processing, that is, processing of SAR 
images in either power, referred to as intensity, or amplitude 
formats is dealt with. In fact, coherent processing of data in 
complex format does not increase the signal-to-noise ratio 
(SNR), but only the coherence [13] of the interferogram and 
thus it is used in SAR interferometry [14]. The noisy phase 
of the complex interferogram may be filtered before it is 
unwrapped [15], [16], but in many cases the regularization 
is directly performed by the unwrapping algorithm [17]. 
Whenever two real valued detected SAR images of the same 
scene are available, the temporal correlation of speckle con-
veys information on the coherence of the interferogram 

that would be calculated from complex data [18]. Thus, 
speckle is not only noise but in some sense has an informa-
tion content, even if difficult to exploit.

Excellent reviews of despeckling methods with high 
tutorial value have been written by Lee et al. [19] and Touzi 
[20]. Our goal is to update the presentation of methods to 
changing times, especially towards recently established 
concepts of multiresolution processing. A brief perspective 
on upcoming promising approaches to despeckling in par-
ticular, and to information extraction from SAR images in 
general, is also included in this survey.

The organization of contents is the following. After a lei-
surely paced section on fundamentals of reflectivity, speckle 
and imaging system modeling, the problem is addressed 
and developed under a statistical signal processing perspec-
tive, as in [20]. Emphasis is given to Bayesian estimation in 
either space or scale-space domains. The main features of 
the latter are concisely surveyed. A comprehensive critical 
review of the most relevant speckle filters, beginning with 
the pioneering Lee filter [21], spans over thirty years and 
highlights trends and fashions that have been pursued and 
developed over time or quickly abandoned. The renewed 
interest of researchers towards despeckling occurred with 
the introduction of multiresolution analysis, when spatial 
domain methods had reached a degree of sophistication, 
together with a saturation of performances, that demanded 
a cross-fertilization from other fields of signal processing. 
A variety of wavelet-based, or more generally scale-space, 
despeckling methods is contextualized and discussed. 
Advantages of such methods over spatial domain methods 
is pointed out. Promising approaches like nonlocal filtering 
and total variation regularization are described.

The second part of the article contains a more articulated 
review of a few selected methods, some of them recently 
proposed by the authors, that are presently indicated as 
highly performing [22] in a comparative assessment carried 
out on image specimens produced by a SAR simulator [23]. 
The most established and widely used statistical indexes to 
assess the quality of despeckling, both with a reference, like 
in the case of the SAR simulator, or of synthetically speck-
led optical images, and blind, i.e., without a reference, are 
surveyed. A brief section compares quantitative results of 
the selected methods and draws some considerations on 
the specific features of the different methods, which exhibit 
different behaviors, and on the suitability and limitations 
of the quality indexes. The trade off between performances 
and computational cost is analyzed. The influence of 
speckle correlation on the despeckling accuracy of single-
look images and a viable strategy for its preliminary reduc-
tion, without affecting the subsequent despeckling stages, 
is described. Eventually, a concluding section remarks the 
key points of the analysis and gives hints that may help 
researchers develop new and better despeckling filters, or 
more simply may help users choose the most suitable filter 
among those that are presently available, also as source or 
executable codes to download.FIgURe 1. Scattering model explaining fully developed speckle.
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II. SIgNAL AND NOISe MODeLINg
Under a statistical signal processing perspective, despeck-
ling filters aim at estimating the noise-free radar reflectiv-
ity from the observed noisy SAR image [20]. In order to 
describe the estimation methods that have been developed 
for the despeckling problem, we need firstly to introduce 
models for speckle, SAR system and reflectivity.

A. Speckle modelS
SAR is an active acquisition instrument that produces a 
radiation and captures the signals backscattered from a 
small area of the imaged scene (resolution cell). The received 
signal, as output from the in-phase and quadrature chan-
nels, is complex. If we assume that the resolution cell con-
tains several scatterers and that no one yields a reflected 
signal much stronger than the others (distributed target), 
then the received signal can be viewed as the incoherent 
sum of several backscattered waves, i.e., ,Ae A ej

i i
j i=z z/  as 

shown in Fig. 1. The amplitudes Ai  and phases iz  are the 
result of several factors, including propagation attenuation, 
scattering of the illuminated targets, antenna directivity. 
Each individual component, however, can not be resolved 
within a resolution cell. A first approach to modeling the 
received signal is solving the Maxwell’s equations according 
to the propagation geometry and scattering medium [24], 
[25]. By using this approach, the way each propagation path 
interferes gives us basic information about the observed 
scene. On the other hand, if we consider that the phases 
of each path are highly different and that they may sum 
in a constructive or destructive way, then the amplitude of 
the received signal varies randomly. So, even if the under-
lying reflectivity field is uniform, it appears as affected 
by a “granular” noise after the imaging system. For visual 
inspection and for specific applications that involve visual 
information retrieval, such as mapping and segmentation, 
the highly varying nature of the signal may be considered as 
a disturbance and is commonly denoted as “speckle”.

The phases iz  are highly varying (since the wavelength 
is much shorter than the resolution cell size and scatterers 
distances) and may be considered as uniformly distributed 
in ( , )r r-  as well as independent of Ai . If the number of 
scatterers is sufficiently high, the central limit theorem 
applies [26] and the resulting signal Ae z jzj

1 2= +z  can be 
seen as a complex signal whose real and imaginary parts 
(in-phase and quadrature components) are independent 
and identically distributed zero-mean Gaussian variables 
with variance / .2v  When this applies speckle is termed as 
fully developed [27]. The joint probability density function 
(pdf) is given by

 ( , )p z z e1
,z z

z z

1 21 2

1
2

2
2

rv= v-
+

, (1)

whereas the amplitude A  is distributed as a Rayleigh pdf, 
that is

 ( )p A A e2
A

A2

v=
v-  (2)

and the power or intensity I A2=  is distributed according to 
an exponential pdf, that is

 ( )p I e1
I

I

v=
v-  (3)

so that the mean of the intensity is equal to .v  It can be 
shown [4], [28] that the intensity measurement carries 
information about the average backscattering coefficient 
(for distributed targets) related to the resolution cell. 
Hence, for specific applications, the parameter v is the 
actual information we would like to extract from a single 
channel SAR system. This can be considered as the radar 
cross section (RCS) of the observed resolution cell. The 
received signal pdf can be reformulated into

 ( )p I e1
I

I
v v=v v-  (4)

or

 I uv= , (5)

where u  is exponentially distributed, that is,

 ( )p u eu
u= - . (6)

Eq. (5) is termed the multiplicative model of speckle.
If only one image (realization of the stochastic process) 

is available, the best estimate of the scene average reflectiv-
ity is just the pixel-by-pixel intensity. This will be a quite 
noisy estimate because of the previously described con-
structive/destructive combination effects. From (3), it fol-
lows that the variance of the intensity in each pixel is ,2v  
so that brighter pixels will be affected by stronger distur-
bances than darker ones. A way to improve the estimation 
of v is to average L  independent intensity values related to 
the same position. This processing, named “multilooking”, 
maintains the mean intensity v but reduces the estimator 
variance to / .L2v  Independent “looks” of a target resolu-
tion cell can be obtained either by appropriate processing 
in the Doppler domain (splitting the Doppler bandwidth 
within the imaging system that compensates the quadratic 
phase variation created by the platform movement) or by 
averaging L  spatial observations. In both cases, the cost to 
be paid for estimation accuracy improvement is spatial res-
olution loss by a factor L . If the hypothesis of independent 
intensity measurements holds (in the case of correlated 
data the assumption fails), the L-look averaged intensity 
IL  is C-distributed, that is

 ( ) ( )p I L
L I e1

I L

L

L
L LI1

L

L

v vC
=v v- -` j  (7)

whereas the relative amplitude image A IL L=  has a square 
root C distribution [4]. For visual inspection and for auto-
matic interpretation tasks, the use of amplitude images is 
preferable, thanks to their reduced dynamic range with 
respect to intensity images, which is accompanied by an 
increment in SNR.
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The model described above is valid under the assump-
tion that the imaged scene is characterized by distributed 
scatterers. In the presence of a scatterer much stronger than 
the others (point target), the received signal pdf becomes a 
Rice distribution and the model above described does not 
apply. In this case, the received signal power is related to 
the single target reflection coefficient and, for the purpose 
of speckle removal, point targets are treated separately 
from distributed targets.

B. SAR SyStem model
In the above analysis, the effect of the imaging system has 
not been taken into consideration. Indeed, the SAR system 
can achieve a spatial resolution of the order of the antenna 
size only if proper processing, referred to as focusing, is 
applied. The energy of the transmitted frequency modu-
lated (FM) chirp pulse is spread into the range-Doppler 
domain and such a processing consists of matched filtering 
along the range and along iso-Doppler curves and is needed 
to compact energy back in the spatial domain [28]. From 
this point of view, a SAR system can be seen as an encoding 
transfer function r( )he  followed by a compression transfer 
function r( )hc  [4], [29]. If r( )S  denotes the complex reflec-
tivity, the observed single look complex (SLC) signal after 
the imaging processor is

 r r r r r( ) [ ( ) ( ) ( )] ( )g C S h n hc e c$ ) )= + , (8)

where the constant C  absorbs propagation information 
(e.g., loss and antenna gains) and the term r( )n  accounts 
for thermal noise at the receiver. For sufficiently high sig-
nal-to-noise ratios, the noise term can be neglected and the 
received complex signal becomes

 r r r r r r( ) ( ) ( ) ( ) ( ) ( )g C S h h C S hc e c$ ) ) $ )= = . (9)

For well-designed SAR, the impulse response r( )h  is pulse-
like and represents the point spread function (PSF) of the 
system that, in a first approximation, can be assumed as 
independent of the position. Again, the intensity r( )gc

2  
is proportional to the average backscattering coefficient 
of the cell and is the information we would like to achieve 
from the observation. An accurate description of the model 
in (9) and of the statistical properties of the acquired SAR 
image is given in [29].

c. Reflectivity modelS
The speckle formation model yields a pixelwise descrip-
tion of the observed signal. For many applications, 
including despeckling, more refined models are needed. 
Such models describe the observed received signal at a 
coarser scale than the single pixel one and try to intercept 
information about the underlying texture of the imaged 
scene and its correlation. It is then crucial to consider also 
the average intensity, i.e., RCS ,v  which is considered the 
information to be retrieved, as a random process. Unfor-

tunately, the RCS is not directly observable and its prop-
erties must be inferred from the intensity values over an 
area in which the texture is homogeneous. In this sense, 
RCS modeling can be seen as an inverse problem whose 
solution is made difficult by the fact that homogeneity 
can be stated only if a ground truth is available, but often 
this is not the case. Furthermore, since the problem can 
be formulated only in a statistical sense, the dimension 
of the homogeneous area becomes crucial: it should be 
as large as possible in order to reliably apply statistical 
hypothesis testing methods, but this contrasts with the 
natural scenes structure that is often characterized by 
the presence of limited size homogeneous areas (such as 
fields, woods, orchards, forests, trees, man-made areas) 
and mixing the information of different textures makes 
the hypothesis tests to fail.

The starting point for solving this inverse problem is 
the statistics of the observed intensity over a homogeneous 
area. The pdf of the intensity signal can be written as

 ( ) ( ) ( )p I p I p dv v v= # , (10)

where ( )p I v  is the single pixel speckle model, given by 
(4) and (7) for the 1-look and L-look cases, respectively. Eq. 
(10) is referred to as the product model of the observed inten-
sity [20]. One of the assumptions that must be made to state 
the validity of the model (10) is that the RCS fluctuation 
scale is larger than that of speckle.

Even though several pdfs have been proposed for the 
intensity I  (e.g., Weibull, log–normal), one of the most used 
pdf is the K  distribution. The K  distribution is a paramet-
ric pdf that, with a suitable choice of its parameters, well 
fits observed intensity histograms. It has also the advantage 
that a closed form of the RCS pdf, i.e., ( ),p v  exists such that 
the product model in (10) yields a K  distribution. In fact, if 
the RCS pdf is a C distribution, that is

 ( ) ( )p e
1

v v
o

o
v
C

=
o o

v
ov-
-

r r` j , (11)

where o is an order parameter and vr is the mean, then the 
pdf of the observed intensity signal is given by

 ( ) ( ) ( )p I L I
L I K

I
LI2 2

L
L

L
2

2
2

o
o o

C C
=

o
o

o

+
+ -

-r r
a ck m, (12)

where ( )Kn $  is the modified Bessel function of order n  
and  Ir  is the mean of intensity. Fitting the parameters of 
the pdf to the observed signal allows information on the 
RCS to be retrieved.

The model in (12) yields a pixelwise statistical descrip-
tion of the observed intensity values. A complete description 
of the scene, however, needs the inclusion of the autocor-
relation function into the model. If such a function is esti-
mated from the observed data, then the exact autocorrela-
tion function of the RCS is quite difficult to achieve and 
usually it does not exist in a closed form [4].
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III. SPACe AND SCALe-SPACe DOMAIN eSTIMATION
From the previous discussion, it emerges that model-
ing the received SAR signal should take into account 
several physical, statistical and engineering aspects of 
the overall system. Such a complexity makes the pro-
cess of extracting average backscatter information from 
the observed signal a nontrivial task. From a signal 
processing perspective, a first step towards finding effi-
cient solutions is stating the acquisition model in the 
simplest form as possible. In [20], several multiplicative 
models of speckle are described and classified accord-
ing to the autocorrelations of the imaged scene and of 
the noise term.

In the following of this section, models of the noisy sig-
nal in both spatial and transformed domains are reviewed, 
Bayesian estimation principles are briefly recalled and the 
wavelet transform, in both decimated and undecimated 
versions, is introduced as a transformation suitable for 
despeckling. Eventually, the modeling of pdfs for Bayesian 
estimation in the wavelet domain is discussed and shown 
to be crucial for performances.

A. modelS of noiSy SignAl
Perhaps, the most used model in the literature on despeck-
ling is the following:

 g fu= , (13)

where f  is a possibly autocorrelated random process 
and represents the noise–free reflectivity; u  is a pos-
sibly autocorrelated stationary random process, inde-
pendent of ,f  and represents the speckle fading term; g  
is the observed noisy image. All the quantities in (13) 
may refer to either intensity or amplitude as well as to 
single-look or multilook images, whose pdfs have been 
described previously.

The variable u may be assumed as spatially correlated [30]. 
Recently, it has been shown [31] that a preprocessing step that 
makes speckle uncorrelated, that is “whitens” the complex 
signal, allows despeckling algorithms 
designed for uncorrelated speckle to be 
successfully applied also when speckle 
is (auto)correlated. Therefore, in the 
following we shall analyze only algo-
rithms working under the hypothesis of 
uncorrelated speckle.

The nonlinear nature of the rela-
tionship between observed and 
noise-free signals makes the filtering 
procedure a nontrivial task. For this 
reason, some manipulations have 
been introduced to make the observa-
tion model simpler. Several authors 
adopt the following model, derived 
from (13):

 ( ) ,g f u f f v1= + - = +  (14)

where ( )v u f1= -  accounts for speckle disturbance in an 
equivalent additive model, in which ,v  depending on ,f  is a 
signal-dependent noise process.

A second way that allows the multiplicative noise to be 
transformed into an additive one is using a homomorphic 
transformation [32]. It consists of taking the logarithm of 
the observed data, so that we have

 
,

log log logg f u

g f u

= +

= +l l l
 

(15)

where ,g fl l and ul denote the logarithm of the quan-
tities in (13). Unlike the case in (14), here the noise 
component ul is a signal-independent additive noise. 
However, this operation may introduce a bias into the 
denoised image, since an unbiased estimation in the log-
domain is mapped onto a biased estimation in the spa-
tial domain [33]; in math form, if u  exhibits [ ] ,E u 1=

[ ] [ ( )] ( [ ]) ( ) .log log logE u E u E u 1 0!= = =l

Over the last two decades, approaches to image denois-
ing that perform estimation in a transformed domain have 
been proposed. Transforms derived from multiresolu-
tion signal analysis [34], [35], such as the discrete wavelet 
transform (DWT), are the most popular in this context. 
Despeckling in a transform domain is carried out by taking 
the direct transform of the observed signal, by estimating 
the speckle-free coefficients and by reconstructing the fil-
tered image through the inverse transform applied to the 
despeckled coefficients.

B. BAyeSiAn eStimAtion conceptS
From the previous discussion about the most widely used 
signal models for despeckling, it can be seen that the multi-
plicative model is often manipulated in order to obtain an 
additive one. Fig. 2 summarizes the various versions of the 
additive models.

The block “Estimator” attempts to achieve a speckle-
free representation of the signal in a specific domain; for 

g = f + v

g = f + v

g = fu

g = fu

Estimator fc

fc

fc

fc

(a)

Estimatorlog exp

(b)

Estimatorw

(c)

Estimatorlog w w-1

w-1

(d)

exp

FIgURe 2. Additive models commonly used in despeckling algorithms: (a) signal-dependent 
in spatial domain, (b) signal-independent in spatial domain, (c) signal-dependent in trans-
form domain, and (d) signal-independent in transform domain.



                                           ieee Geoscience and remote sensinG maGazine    September 201312 

example, in the transform domain, as in Fig. 2-(c), or in the 
homomorphic-transform domain, as in Fig. 2-(d), in which 
the noise-free informative signal is contaminated with 
additive signal-dependent or signal-independent noise, 
respectively.

The basics of Bayesian estimation are now reviewed for 
the simplest case, shown in Fig. 2-(a), even though analo-
gous derivations hold for all the other cases in Fig. 2.

A Bayesian estimator [36] tries to achieve an estimate 
ft  of f —which is assumed to be a random process—by 
having some prior information about the signal to be esti-
mated, summarized in ( ),p fF  the a-priori pdf of .f  Different 
Bayesian estimators can be defined according to the choice 
of the Bayesian “risk”, i.e., the function of the estimation 
error f ff = -t  we would like to minimize.

The minimum mean square error (MMSE) estimator 
minimizes the quantity [ ] [( ) ] .E E f f2 2f = -t  It is well-
known [36] that the solution is given by

 [ ]f E f gMMSE
F G=t , (16)

which is the expectation of the noise-free signal conditional 
to the noisy observation. By exploiting the Bayes rule and 
the additive signal-dependent model ,g f v= +  we obtain

 

( )

( )
( ) ( )

( ) ( )

( ) ( )
.

f fp f g df

f p g
p g f p f

df

p g f p f df

fp g f p f df

F G

G

G F F

V F

V F

MMSE =

=

=
-

-

t #
#

#
#

 

(17)

The estimate in (17) would require the knowledge of the 
nonstationary joint pdfs of any orders.

A simpler solution requiring only second order moments 
is the linear MMSE (LMMSE) estimator, in which the MMSE 
solution is sought by constraining the estimator to be a lin-
ear combination of the observed variables. The LMMSE 
estimator is given by

 [ ] ( [ ]),f E f C C g E gLMMSE
fg gg

1= + --t  (18)

in which Cfg  is the covariance matrix between f  and g  and 
Cgg  is the autocovariance matrix of .g  Prior knowledge is 
now embedded in the second order statistics of the noise-
free and noisy signals, which can be derived by exploiting 
the additive model.

The maximum a-posteriori probability (MAP) estima-
tor minimizes the quantity [ ( )],E C f  where ( )C 1f =  for 
| |>f d and ( )C 0f =  elsewhere. The solution, when d is 
small, is given by

 [ ]arg maxf p f gMAP

f
F G=t . (19)

Again, by exploiting the Bayes rule and the additive model, 
we have

 
( ) ( )

( ) ( )

arg max

arg max

f p g p f

p g f p f

f
f

G F

f
V F

F
MAP =

= -

t

 
(20)

or, equivalently,

 

( )]log p f+

[ ( )

arg max

log

f

p g f
f

V

F

MAP =

-

t

 (21)

Eqs. (17), (18) and (20) reveal 
that all solutions, besides to 
the a-priori information on ,f  
require also knowledge of the 
pdf of the noise component .v

c. WAvelet tRAnSfoRmS
A Bayesian estimation carried 
out in the spatial domain leads 
to a solution that adaptively 
depends on local statistics, i.e., 
is a space-adaptive estimator. A 
Bayesian estimation carried out 
in the multiresolution, or scale-
space, domain may have the 
extra value of leading to a scale-
space adaptive estimator, that 
is, an estimator adaptive not 
only in space but also in scale. 
Such an extra value is not auto-
matic and requires careful pdf 
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by eliminating the downsamplers and upsamplers contained in the shaded box.
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modeling in the transformed domain, otherwise the spatial 
adaptivity may get lost in favor of the scale adaptivity.

The wavelet analysis provides a multiresolution rep-
resentation of continuous and discrete-time signals and 
images [35]. For discrete-time signals, the classical maxi-
mally decimated wavelet decomposition is implemented 
by filtering the input signal with a low pass filter ( )H z0  and 
a high pass filter ( )H z1  and downsampling each output by 
a factor two. The synthesis of the signal is obtained with a 
scheme symmetrical to that of the analysis stage, i.e., by 
upsampling the coefficients of the decomposition and by 
low pass and high pass filtering. Analysis and synthesis fil-
ters are designed in order to obtain the perfect reconstruc-
tion of the signal and by using different constraints (e.g., 
orthogonal or biorthogonal decomposition, linear phase 
filters). Applying the same decomposition to the low pass 
channel output yields a two-level wavelet transform: such 
a scheme can be iterated in a dyadic fashion to generate a 
multilevel decomposition. The analysis and synthesis stages 
of a two-level decomposition are depicted in Fig. 3-(a).

In several image processing applications, e.g., compres-
sion, the DWT is particularly appealing since it compacts 
energy in few coefficients. However, for most of the tasks 
concerning images, the use of an undecimated discrete 
wavelet transform (UDWT) is more appropriate thanks 
to the shift-invariance property. UDWT is also referred 
to as stationary WT (SWT) [37], [38], as opposite to Mal-
lat’s octave (dyadic) wavelet decomposition DWT [35], 
which is maximally, or critically, decimated. The rationale 
for working in the UDWT domain is that in DWT, when 
coefficients are changed, e.g., thresholded or shrunk, 
the constructive aliasing terms between two adjacent sub-
bands are no longer canceled during the synthesis stage, 
thereby resulting in the onset of structured artifacts [39].

As to the construction of the UDWT, it can be shown 
that if we omit the downsamplers from the analysis stage 
and the upsamplers from the synthesis stage, then the 
perfect reconstruction property can still be achieved. The 
relative scheme for a two-level decomposition is depicted 
in Fig. 3-(b). In the block diagram, by applying the noble 
identities [40], the downsamplers (upsamplers) have been 
shifted towards the output (input) of the analysis (synthe-
sis) stage. Eliminating these elements yields the UDWT. As 
a consequence, the coefficients in the transform domain 
can be obtained by filtering the original signal by means of 
the following equivalent transfer functions:

 

( ) ( ),

( ) ( ) ( ),

H z H z

H z H z H z

,

,

eq l
j

m

j

eq h
j

m

j

0
0

1
2

0
0

2
2

1
2

m

m j 1

$

=

=

=

-

=

-
-= G

%

%
 

(22)

where the subscripts l  and h  refer to the approximation (low 
pass) and detail or wavelet (bandpass and high pass) sig-
nals, whereas j  denotes the level of the decomposition. An 
example of the equivalent filters frequency responses, rela-
tive to a four level decomposition, is shown in Fig. 4.
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FIgURe 4. Equivalent filters frequency responses obtained from 
8-tap Daubechies orthogonal wavelets [34].
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pyramid decomposition (on the left) and the nonsubsampled direc-
tional filter banks (on the right) composing the contourlet transform.
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Let ( )A nx
j  and ( )W nx

j  denote the approximation and 
wavelet coefficients, respectively, of the signal x  at the jth 
level of the decomposition, whereas n is the spatial index. 
Since the wavelet transform is linear, from equation (14) 
we have

 ( ) ( ) ( )A n A n A ng
j

f
j

v
j= +  (23)

 ( ) ( ) ( )W n W n W ng
j

f
j

v
j= + . (24)

Usually, only the wavelet coefficients (24) are processed 
for despeckling; the baseband approximation is left 
unchanged.

The wavelet transform is usually implemented for 
images by using separable filtering along the columns and 
the rows of the image. The effect of this processing is the 
extraction, in each subband, of a rectangular region of the 
frequency plane which corresponds, in the spatial domain, 
to the extraction of horizontal and vertical details with dif-
ferent degrees of resolution. The frequency plane splitting 
relative to a single level decomposition is given in Fig. 5-(a). 
However, extracting directional information has been dem-
onstrated to be useful in several image processing tasks.

Recently, multiresolution transforms embedding direc-
tional information, such as contourlets [41], curvelets [42], 
[43], and many others, have been successfully applied to 
denoising in general and despeckling in particular. The 
nonsubsampled contourlet transform is a combination 
of a nonsubsampled Laplacian pyramid (NLP) decom-
position and of nonsubsampled directional filter banks 
(NDFB). The relative frequency splitting is depicted in  
Fig. 5-(b). As in the case of the UDWT, also the coeffi-
cients of the nonsubsampled contourlet transform can 
be achieved by means of linear time-invariant (LTI) sys-
tems directly applied to the input, which allows statistical 
parameters to be easily computed. Using directional infor-
mation is effective in terms of despeckling performance 
[44], even though a higher computational cost must be 
paid due to the need of a nonseparable implementation.

By assuming that the transform is linear, the addi-
tive models in (14) and (15) can be easily generalized to 
the transformed domain. Specifically, for the formulation 
given in (14), if Wx  denotes the transform operator applied 
to the signal ,x  we have

 .W W Wg f v= +  (25)

In an analogous way, by applying both the homomorphic 
filtering concept and the linear transform, the observation 
model in (15) becomes

 .W W Wg f u= +l l l  (26)

The Bayesian estimator explicitly derived for the addi-
tive model in (14), can also be applied to the additive 
models defined in (15), (25), and (26) by simply chang-
ing the type of variables and prior knowledge, that is: 1) 
the prior pdf of the signal of interest (related to the reflec-

tivity) and represented by , ,f f Wfl  and Wf l  in equations 
(14), (15), (25), and (26), in that order; 2) the pdf of the 
additive noise component, represented by , ,v u Wvl  and 

,Wul  in the same equations.

d. pdf modeling
Bayesian estimation relies on an accurate probabilistic 
modeling of the signals under concern. However, the choice 
of pdfs suitable for modeling the data of interest is not a 
simple task. In Section II, we have described some of the 
most used pdfs for the speckle and reflectivity processes. 
While the former derive from the image formation mecha-
nism and may be considered as valid in most of the images 
where the fully developed speckle model holds, the latter 
highly depend on the imaged scene. We highlight again 
that different types of landscapes and land covers induce 
different distributions on the reflectivity signal. Models of 
the underlying land cover may help to derive a pdf of the 
imaged signal, but this knowledge may not be available for 
despeckling or may be insufficient. As to the modeling of 
signals in the homomorphic domain, an exact derivation 
of the log-intensity and of the log-amplitude of the fading 
variable is available [33], whereas the characterization of 
the backscattering coefficient still remains crucial.

The modeling of the involved variables may be simpler 
and more robust if one works in a multiresolution, or scale-
space, domain, instead than in the spatial domain. In fact, 
it is well-known that the pdf of wavelet coefficients can 
be approximated by several unimodal distributions—as 
noticed by Mallat in his seminal paper [35], where a gener-
alized Gaussian was used—that can be described by a small 
number of parameters. They can be adaptively estimated 
from the coefficients of the observed image, independently 
of the distribution of the image that is transformed.

Validating a hypothetical pdf model is, in general, quite 
hard. In some works, wavelet coefficients pdfs are validated 
“globally” from the observation of the histogram of the 
amplitude of the coefficients in a whole subband. However, 
since the signal is nonstationary, spatially adaptive meth-
ods should be used instead. A single observation, or realiza-
tion, of the scene is usually available; thus, one may only 
conjecture that wavelet coefficients “locally” follow a given 
distribution (only few samples are available to perform the 
validation of the local model) whose parameters locally 
vary. A way to check the validity of the pdf model is experi-
mentally observing the performances of despeckling filters 
on either true SAR or synthetically speckled images. As a 
general rule of thumb, the higher the number of param-
eters, or degrees of freedom, of the pdf, the better its ability 
to model the true wavelet coefficients pdf within a whole 
subband, but the lower their estimation accuracy from the 
few samples available in a local window within a subband 
and the higher the complexity of the resulting estimator. 
Therefore, the use of reasonably simple distributions may 
be expected to yield better results than more complex ones, 
that is, overfitting is not rewarding.
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Another fact that should be considered when a pdf 
model is chosen is the computational cost. Some combina-
tions of estimation criterion and pdf model yield a Bayesian 
estimator that can be achieved only numerically [45]. This 
fact may prevent from using the filter when huge amounts 
of data need to be processed. In this case, a closed form 
solution may be preferred, even though a possible loss of 
performances may be experienced.

IV. A ReVIeW OF DeSPeCKLINg MeTHODS
A multitude of despeckling filters can be obtained by 
combining the different domains of estimation (spa-

tial, homomorphic, wavelet, homomorphic-wavelet), 
the estimation criteria, e.g., MMSE, LMMSE, minimum 
mean absolute error (MMAE), MAP or non-Bayesian, 
and the pdf models. A nonexhaustive review and clas-
sification of methods is attempted in the following of 
this section.

A. BAyeSiAn methodS in SpAtiAl domAin
Early works on despeckling were deployed in the spatial 
domain and were obtained by making assumptions on the 
statistical properties of reflectivity and speckle, e.g., pdf 
and autocorrelation function.

(a) (b)

(c) (d)

FIgURe 6. Examples of the application of Bayesian estimators in the UDWT domain: (a) original 5-look ERS-2 image and filtered versions 
obtained with, (b) Lee refined filter [49], (c) refined C -MAP filter [56], and (d) Rational Laplacian Pyramid filter [59].
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Lee Filter—The local-statistics filter, introduced by 
Jong-Sen Lee in 1980, is reportedly the first model-based 
despeckling filter. The original paper [21] contained solu-
tions for both additive signal-independent noise and 
speckle noise. The latter solution was thoroughly devel-
oped in [46] and reviewed in [47] together with the sigma 
filter. An LMMSE solution was derived by linearizing the 
multiplicative noise model around the mean of the noisy 
signal. In this way, the author devised an approximate but 
effective solution which is identical to the exact solution, 
apart from the term ( ) ,1 u

2 1v+ -  in which u
2v  is the variance 

of the multiplicative noise .u  The contribution of this term 
can be practically neglected for multi-look images, in which 

1u
2 %v  [19], [48].

Lee Refined Filter—This filter [49] was designed to over-
come the drawback of edge boundaries that are left noisy by 
Lee filter. To improve filtering, once an edge is detected in a 
7 # 7 sliding window, the algorithm uses the local gradient 
to estimate its orientation. Eight edge-directed non-square 
windows are allowed. The estimation of the local mean and 
of the local variance are performed within the local window 
that better fits the edge orientation. If no edge is detected, 
the estimates are computed on the whole 7 # 7 window. 
Filtering results are quite impressive, particularly on edges 
and high contrast areas. Some artifacts may occur when the 
filter processes textured areas that result to be overly seg-
mented. Another limitation is that the filter works with a 
window of fixed size 7 # 7: textures characterized by a high 
spatial variation and thin linear features may be altered. An 
ERS-2 image of Florence is shown in Fig. 6-(a); processing of 
refined Lee filtering in Fig. 6-(b).

Frost Filter—In Frost filter [50], starting from a model 
of the coherent imaging system, a parametric approxima-
tion of the autocorrelation function of reflectivity is derived 
from local statistics. Such a function is used to devise an 
LMMSE solution for the noise-free reflectivity itself. The fil-
tered value is a linear combination of pixel values within 
the local window with a Gaussian weighting function that 
depends on the local coefficient of variation of the noisy 
image ,g  namely ,Cg  defined as the ratio of local standard 
deviation to local mean. Despite its large popularity in the 
image processing community, Frost filter had no develop-
ments over time, either by the authors or by others, apart 
from the heterogeneity adjustment common to all spatial 
Bayesian filters [51], which will be reviewed at the end of 
this subsection.

Kuan Filters—Kuan’s filter [52] exactly implements the 
LMMSE solution (18) starting from a signal model that fea-
tures nonstationary mean, nonstationary variance and thus 
a diagonal covariance matrix in (18). The resulting LMMSE 
solution is referred to as local LMMSE (LLMMSE) to indi-
cate that it contains only local first order statistics, mean 
and variance, that are easily calculated in a sliding win-
dow. Accordingly, the optimum estimate of reflectivity, ,ft  
is given as a combination of the unfiltered noisy pixel value 
g  and of its local average ,gr  approximating the local mean, 

with weights nonnegative and summing to one. The center 
pixel is more or less weighted depending on its local signal 
to noise ratio (SNR). Besides despeckling, also restoration 
for the effects of the imaging system can be carried out [53]. 
The price is a considerable increment in the computational 
complexity of the procedure.

MAP Filters—The prototype of MAP filters in spatial 
domain is the C-MAP filter, introduced in [54] and thor-
oughly analyzed in [55]. It assumes that both the radar 
reflectivity and the speckle noise follow a Gamma distri-
bution and solves the MAP equation (21) accordingly. It is 
designed to smooth out noise while retaining edges or shape 
features in the image. Different filter sizes greatly affect the 
quality of processed images. If the filter is too small, the 
noise filtering algorithm is not effective. If the filter is too 
large, subtle details of the image will be lost in the filtering 
process. A 7 # 7 filter usually gives the best tradeoff.

A refined version of the C-MAP filter that features 
an improved geometrical adaptivity, analogously to 
Lee refined filter, was proposed in [56]. The visual result 
appears in Fig. 6-(c). This achievement marks the beginning 
of a certain performance saturation in spatial despeckling 
methods, although highly sophisticated Bayesian methods 
in space domain, featuring MAP estimation associated to, 
e.g., Gauss-Markov and Gibbs random fields for prior mod-
eling have been introduced later [57] and are still used [58].

Despeckling Filters and SAR Heterogeneity—The 
filters described in this subsection can be adjusted to the 
heterogeneity of SAR images, as suggested in [51]. The 
rationale is that in true SAR images at least three statisti-
cal classes can be recognized: homogeneous, textured, and 
strong, or persistent, scatterer. The first class is character-
ized by a spatially constant reflectivity and in this case the 
best estimator is a plain average of intensity pixel values in 
a neighborhood. Pixel belonging to the third class should 
be detected and left unprocessed, as they are intrinsi-
cally noise-free and are used for calibration, registration, 
etc. The intermediate class may be processed through the 
desired filter, e.g., Lee, Frost and Kuan filters. The result-
ing filters are known in the literature as enhanced Lee, 
Frost and Kuan filters [51]. The C-MAP filters was origi-
nally defined in enhanced version [54]. The three classes 
are found by thresholding .Cg  The two thresholds, namely 
Cmin  and Cmax  are empirically set equal to ,uv  the standard 
deviation of speckle, and 3 uv  [51].

B. BAyeSiAn methodS in tRAnSfoRm domAin
Apart from a few methods that employ multiresolution 
concepts without a formal multiresolution analysis, like 
Meer’s filter and especially the filter based on the Laplacian 
pyramid, all filters reviewed in this subsection exploit the 
discrete wavelet transform, either decimated or not.

Meer’s Filter—Meer’s filter [60] considers a local neigh-
borhood constituted by a set of three concentric sliding 
windows, 7 # 7, 5 # 5, and 3 # 3. A homogeneity index 
is given by ,Cg  computed over each of the windows. The  
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spatial average on the largest window satisfying a homoge-
neity criterion, defined by thresholding its ,Cg  is given as 
output. If such a window does not exist, Kuan’s LLMMSE 
estimate on the innermost 3 # 3 window is assigned to the 
center pixel. This filter is effective in preserving point tar-
gets, linear features and edges, thanks to its 
capability to shrink its window size. Per-
formances on point targets and linear fea-
tures are slightly better than those of Lee’s 
refined filter which, however, is superior on 
linear edges.

RLP Filter—The rational Laplacian pyr-
amid (RLP) filter [59] is an evolution for 
speckle filtering of the denoising method 
based on the enhanced Laplacian pyramid 
[61]. The latter is commonly used for spa-
tially scalable layered video coding as well 
as for lossless and near lossless compres-
sion of still images by exploiting quantization noise feed-
back [62], [63].

RLP differs from LP because its passband layers are 
obtained by taking the ratio pixel by pixel between one 
level of the Gaussian pyramid and the interpolated version 
of the lower resolution upper level. While the baseband 
icon, corresponding to the top of the Gaussian pyramid, 
may be left unprocessed because of its high SNR obtained 
through cascaded low pass filtering and decimation stages, 
analogously to multi-looking, the bandpass levels of RLP 
are processed by means of Kuan’s filter [52]. The despeck-
led image is synthesized from the denoised RLP. This mul-
tiscale LLMMSE filter outperforms its spatial counterpart 
thanks to multiresolution processing. The result of RLP fil-
tering can be watched in Fig. 6-(d).

Homomorphic Filtering in Wavelet Domain—Filter-
ing in the wavelet-homomorphic domain (see Fig. 2-(d)) 
has been extensively used during the last twenty years and 
potentially superior performances over conventional spa-
tial filters have been recognized [64], [65]. In fact, each 
wavelet subband is associated to a speckle contribution that 
may be exactly measured [66] and filtered out. Thus, spa-
tially adaptive filtering become also scale-adaptive.

Classical hard- and soft-thresholding methods [67] 
were applied in [68]. Thresholding based on nonlinear 
functions (sigmoid functions), adapted for each subband, 
has been used in [69]. In [70], MMSE estimation has been 
used associated to a combination of generalized Gaussian 
(GG)/Gaussian pdfs for the reflectivity and for the noise 
components, respectively. In [71], MMSE estimation have 
been used after modeling wavelet coefficients by means of 
Gaussian mixtures and Markov random fields to charac-
terize their spatial and interscale dependency. In [72], the 
MAP criterion has been used associated to a-stable dis-
tributions for the prior of the signal and to a log-normal 
pdf for the noise. In [73], MAP estimation is applied based 
on normal inverse Gaussian distributions. In [74], MMAE 
estimation has been used associated to a Cauchy prior for 

the reflectivity signal and to a Gaussian pdf for the noise; 
the previous method has been extended to the MAP crite-
rion in [75]. In [76], MAP estimation is used associated to 
a heavy-tailed Rayleigh prior for the signal and to Gamma 
or Nagakami models (for images in intensity or amplitude 

format, respectively) for the noise.
Non-Homomorphic Filtering in Wave-

let Domain—Nonhomomorphic wavelet-
domain despeckling (see Fig. 2-(c)) has been 
considered less frequently in the literature. 
Even though the absence of the bias due to 
the nonlinear mapping of the logarithm is an 
advantage, the estimation of the parameters 
of the signal and noise pdfs becomes more 
complex. In fact, in the equivalent additive-
noise model for the non-homomorphic case, 
the noise term is signal-dependent and, there-
fore, its parameters are much more difficult to  

be estimated.
In the seminal paper by Foucher et al. [77], undeci-

mated wavelet was firstly used for despeckling. Estima-
tion is based on the MAP criterion and the Pearson system 
of distributions. In [78], the LMMSE estimator, optimal 
under the Gaussianity assumption, has been presented. 
In [79], the LMMSE estimator with mixtures of Gaussian 
pdfs is enforced by the use of the ratio edge detector [80] to 
improve despeckling of contours. In [81], MAP estimation 
is used along with the assumption of normal inverse Gauss-
ian distributions for the wavelet coefficients. MAP estima-
tion associated to locally varying generalized Gaussian 
(GG) distributions has been used in [82]. In [83] a segmen-
tation-based MAP despeckling with GG priors is achieved. 
The method in [82] has been extended to the domain of 
the nonsubsampled contourlet transform (NSCT) in [44]. 
Another method in the contourlet domain has been pro-
posed in [84]. MAP and MMSE estimators associated to 
Laplacian and Gaussian PDFs for the signal and noise com-
ponents have been proposed in [85]. Generalized C and 
Gaussian distributions have been used for MAP despeck-
ling in [86], [87]. An interesting example of despeckling 
not pertaining SAR but ultrasound images and based on 
statistical classification of signal/noise wavelet coefficients 
is presented in [88]. Also non-Bayesian methods based on 
the classification of signal and noise wavelet coefficients 
have been proposed in [89], [90].

c. non-BAyeSiAn AppRoAcheS
A number of despeckling filters published over the last 
thirty years do not follow a Bayesian approach. In the fol-
lowing, the most popular approaches and related methods 
are summarized.

Order Statistics and Morphological Filters—Starting 
with median filter, order-statistics filters encountered a cer-
tain popularity for despeckling, thanks to their peculiar fea-
ture of edge preservation. A conditional version of median 
filter [91], replaces the central pixel value of the local sliding 
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window with the sample median if and only if the former 
is recognized as an outlier, i.e., an extremal value within 
the window. An adaptive version of the weighted median 
filter was specifically proposed for despeckling [92]. It is 
substantially a center weighted median filter, in which the 
weight is adaptively calculated from local statistics, in order 
to preserve edges, retain textures and smooth the noisy 
background.

Geometric filter (GF) [93] is a powerful tool for edge-
preserving smoothing of noise and especially of speckle, 
the purpose it was designed for. GF iteratively erases noise 
samples regarded as geometric artifacts of the 3-D shape 
defined by the 2-D gray-level function. GF is a nonlinear 
local operator that exploits a morphologic approach to 
smooth noise one image line at a time using a complemen-
tary hull algorithm, whose iterations converge towards 
roots, i.e., steady patterns invariant to further iterations, 
in which spatial details thinner than a critical size are 
completely suppressed. Thicker objects are just slightly 
smoothed and therefore fairly preserved as filtering is iter-
ated. A decimated version of GF [94], suitable for spatially 
correlated noise, including speckle, consists of applying GF 
to the four polyphase components, in which the original 
image is preliminarily decomposed, and of reinterleaving 
the filtered components to yield the denoised image.

None of the methods reported above explicitly accounts 
for the speckle noise model. However, their computational 
speed together with the capability of preserving abrupt dis-
continuities of level was found to be of interest in computer 
vision and object recognition applications. Nowadays these 
methods are less and less frequently used, though they 
might be valuable for high-resolution images of man-made 
environments, in which persistent scatterers and not fully 
developed speckle are frequently encountered.

Anisotropic Diffusion—Anisotropic diffusion [95] is 
a technique, extremely popular in the image processing 
community, that aims at reducing image noise without 
removing significant parts of the image content, typi-
cally edges, lines or other details that are important for 
the interpretation of the image. The derivation speckle 
reducing anisotropic diffusion (SRAD) is tailored to 
coherent images [96]. SRAD is the edge-sensitive diffu-
sion for speckled images, in the same way that conven-
tional anisotropic diffusion is the edge-sensitive diffu-
sion for images corrupted with additive noise. Just as the 
Lee and Frost filters utilize the coefficient of variation in 
adaptive filtering, SRAD exploits the instantaneous coef-
ficient of variation, which is shown to be a function of the 
local gradient magnitude, and Laplacian operators. SRAD 
overcomes traditional speckle removal filters in terms of 
mean preservation, variance reduction, and edge local-
ization. However, the unrealistic smoothness introduced 
after iterated processing makes SRAD unsurpassed for 
cartoon-like images, i.e., made up by textureless geomet-
ric patches, but may be unsuitable for real SAR images, 
because fine details and textures that may be useful for 

analysis are destroyed. A notable application of SRAD is 
for coastline detection in SAR images [97].

Simulated Annealing Despeckling—Simulated Anneal-
ing (SA) was originally used for SAR image despeckling and 
segmentation by White [98]. SA is a stochastic optimization 
method used for finding the global maximum of an a-pos-
teriori multivariate distribution, or equivalently the global 
minimum of a multidimensional energy function, which 
is often made difficult by local maxima (minima), which 
can easily trap the optimization algorithm. SA is iterative 
by nature, where a new configuration for iteration is found 
from the previous configuration by applying a generation 
mechanism and accepting the new configuration using 
an acceptance criterion based on the energy divergence. 
The temperature variable controls the optimization, and it 
is decreased throughout the optimization process. For the 
first iterations, when it is high, there is a high probability 
of accepting configurations resulting in an increase in the 
energy, thus making SA able to get out of local minima. As 
the temperature is gradually decreased, the probability of 
accepting configurations resulting in increasing energies is 
reduced, so that at the end of the minimization no increases 
are accepted, and the global minimum configuration is ide-
ally reached. Despite its potentiality, the unlikely cartoon-
like smoothness produced by SA was noticed in [99]. After 
that, SA was used only in conjunction with complex multi-
variate pdf models, like in polarimetric SAR [100].

Sigma Filter—A conceptually simple noise smoothing 
algorithm is the sigma filter originally developed for addi-
tive signal-independent noise [101] and promptly extended 
to speckle removal [102] also in a comparison with local 
statistics filtering [47]. This filter is motivated by the sigma 
probability of the Gaussian distribution, and it smooths the 
image noise by averaging only those neighborhood pixels 
which have the intensities within a fixed sigma range of the 
center pixel. Consequently, image edges are preserved, and 
subtle details and thin lines, such as roads, are retained.

An enhanced version of Lee’s sigma filter [103] is derived 
and proposed for unbiased filtering of images affected by 
multiplicative noise with speckle statistics. Instead of the 
plain point value, a more accurate start value is first pro-
duced, and then fed to the procedure of conditional aver-
age. A robust estimate of the nonstationary mean is defined 
according to a decision rule. The start value is provided by 
a nonlinear decision rule, aimed at rejecting noisy sam-
ples, that is performed on the averages computed within 
four isotropically balanced pixel sets able to capture step 
edges and thin lines. The level range of pixels to be aver-
aged, adaptively defined as the product of the space-variant 
mean estimate by the constant noise variance, is also forced 
to account for the imbalance of the noise distribution, for 
unbiased processing.

Eventually, in [104] the bias problem is solved by rede-
fining the sigma range based on the speckle pdf. To miti-
gate the problems of blurring and depressing strong reflec-
tive scatterers, a target signature preservation technique is 
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developed. In addition, the LLMMSE estimator for adaptive 
speckle reduction [21], [52] is incorporated.

Bilateral Filtering—The bilateral filter (BF), originally 
introduced in [105] for gray scale images, has been recently 
extended to despeckling in [106]. The rationale of BF is that 
each pixel value within a sliding window is weighted both 
for the distance to the center, as in Frost filter, and for the 
difference to the value of the center, as in sigma filter. In 
an adaptive version of BF suitable for despeckling [107], 
the spatial weighting is a Gaussian function, whose span 
depends on the local coefficient of variation, analogously 
to the enhanced Frost filter. A rule borrowed from [108] 
defines the weights as the gray level difference between the 
central pixel and each neighboring pixel, as the probabil-
ity of two values in a speckled image that exhibit the same 
reflectivity value. The adaptive method in [107] exploits an 
order statistic filter, like [91], to reject outliers that often 
occur. Despite its elegance and relatively low computa-
tional cost, in the presence of strong noise, like for single-
look images, speckle-oriented BF suffers from limitations 
given by the finite size spatial function, same as all local 
spatial filters. A way to overcome such a drawback is adopt-
ing a nonlocal filtering approach.

Nonlocal Filtering—Among the despeckling methods 
that cannot be included in the classical Bayesian frame-
work, nonlocal (NL) filtering is surely one of the most inter-
esting and promising solutions [108], [109]. NL filtering is a 
generalization of the concept of data-driven weighted aver-
aging, in which each pixel is weighted according to its simi-
larity with the reference pixel, as in the pioneering sigma 
filter. The NL mean filter [110] extends the above method, 
by defining the weights as a function of the Euclidean dis-
tance between a local patch centered at the reference pixel 
and a similar patch centered at a given neighboring pixel. 
The block-matching 3-D 
filter (BM3D) [111] com-
bines the advantages of 
the NL principle and of 
the wavelet representa-
tion: 3-D groups of pixels 
are formed by collecting 
blocks of pixels drawn 
from different image 
locations and chosen 
according to their simi-
larity with a reference 
block, and Wiener filter-
ing is applied to the wave-
let coefficients of such 
3-D groups.

In [108], NL filter-
ing has been applied 
to despeckling by sub-
stituting the Euclidean 
distance used in the NL 
mean filter with a proba-

bilistic measure that takes into account the pdf of SAR 
data, and by proposing an iterative procedure for refining 
the weights. Following a similar approach, an improved 
similarity measure has been recently proposed in [112]. 
Other approaches consider a Bayesian NL framework 
[113], which has been applied to the despeckling of both 
ultrasound images [114] and SAR images [115]. The NL 
principle has been successfully applied also to despeck-
ling in the wavelet domain [109], [116]. Namely, in [109] 
the authors extend the BM3D filter by redefining the 
similarity measure among block of pixels according to 
[108], and employing the LMMSE principle [78] in the 
estimation step.

Total Variation Regularization—Another popular 
denoising approach is based on total variation (TV) regu-
larization [117]. In such a method, denoising is achieved 
through the minimization of a suitable cost function, 
combining a data fidelity term with a prior that enforces 
smoothness while preserving edges. Several solutions 
exist to apply TV methods in the case of multiplicative 
noise [118]–[124]. These solutions differ according to the 
domain in which the optimization is performed, which 
can be either the intensity or the logarithm of the inten-
sity, and the definition of the data fidelity term. In [119], 
the authors define the optimization problem in the 
original intensity domain and apply a data fidelity term 
based on a maximum a posteriori approach, assuming 
a Gamma distributed speckle and a Gibbs prior. Due to 
the difficulty of defining strictly convex TV problems in 
the original intensity domain, several authors have con-
sidered the logarithmic domain instead. When applying 
TV regularization in the logarithmic domain, convex 
TV problems can be obtained by applying different data 
fidelity terms, including the L2  norm [120], MAP based 
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on Gamma distributed speckle [120], [124], a combina-
tion of the previous terms [121], the generalized Kull-
back-Leibler divergence [123], the L1  norm on curvelet 
coefficients [122]. It is worth noting that all the above 
methods have been mainly validated on simulated data. 
The literature regarding the application of such meth-
ods to actual SAR images is quite scarce [125]–[127], and 
there is a general lack of comparisons with Bayesian and 
NL despeckling methods.

Despeckling Based on Compressed Sensing—A new 
signal representation model has recently become very 
popular and has attracted the attention of researchers 
working in the field of restoration of images affected by 
additive noise as well as in several other areas. In fact, 
natural images satisfy a sparse model, that is, they can 
be seen as the linear combination of few elements of a 
dictionary or atoms. Sparse models are at the basis of com-
pressed sensing [128], which is the representation of sig-
nals with a number of samples at a sub-Nyquist rate. In 
mathematical terms, the observed image is modeled as 

,y Ax w= +  where A  is the dictionary, x  is a sparse vector, 
such that ,x K0; ; #  with ,K M%  with M the dimension 
of ,x  and w  is a noise term that does not satisfy a sparse 
model. In this context, denoising translates into find-
ing the sparsest vectors with the constraint ,y Ax <2

2; ; e-  
where e  accounts for the noise variance. The problem 
is NP-hard, but it can be relaxed into a convex optimi-
zation one by substituting the pseudo-norm 0$; ;  with 

.1$; ;  Recently, some despeckling methods based on the 
compressed sensing paradigm and sparse representations 
have appeared [129]–[131].

V. MULTIReSOLUTION bAyeSIAN FILTeRINg
In this section, we review some methods recently pro-
posed for despeckling in the undecimated wavelet domain 
that use a multiresolution analysis. The methods refer to 

the additive model in (26), that is, they do not exploit the 
homomorphic transform, which may introduce bias in the 
estimation of the despeckled image.

Fig. 7 outlines the flowchart of Bayesian despeckling 
in UDWT domain. As it appears, the majority of process-
ing is carried out in the transform domain. Statistics in the 
transform domain are directly calculated from the spatial 
statistics of the image by exploiting the equivalent filters 
(4), as firstly proposed by Foucher et al. [77].

A. lmmSe filteR
In the case of zero-mean Gaussian pdf modeling for the 
quantities Wf  and ,Wv  the MMSE and MAP Bayesian esti-
mators are identical. The expression of the filter has a simple 
and closed analytical form that depends only on the space 
varying variance of the wavelet coefficients [78], that is

 ( SNR ) .W W W 1LMMSE
f g

W W

W
g2 2

2
1 1

f v

f
$ $
v v

v
=

+
= + - -t  (27)

Thus, LMMSE estimation corresponds to a shrinkage of the 
noisy coefficient by a factor inversely related to its SNR. 
Unfortunately, the wavelet coefficients of noise–free reflec-
tivity do not respect the Gaussian assumption, especially 
in the lowest levels of the wavelet decomposition, so that 
its performance are inferior to more complex Bayesian esti-
mators. In Fig. 10-(a) a single-look COSMO-SkyMed image 
is shown. In Fig. 10-(b) the despeckled image obtained by 
applying the LMMSE estimator is presented.

B. mAp filteRS
In this section, we present two different filters that use the 
MAP estimation criterion but different models for the pdfs 
of the wavelet coefficients relative to the original reflectiv-
ity and to the additive signal–dependent noise. 

Equation (21) can be rewritten as

 arg [ln ( ) ln ( )].maxW p W W W p Wf
W

W W g f f W f
MAP

f
V F F= - +t

 (28)

Since the signal and noise processes are nonstationary, 
space varying pdfs must be considered. The pdfs that are 
considered here can be seen as a trade-off between simplic-
ity (few parameters to be estimated from the observed data) 
and modeling capability.

MAP–GG filter—In [82], the MAP criterion is com-
bined with a generalized Gaussian (GG) distribution 
for the wavelet coefficients. Since the birth of the wave-
let recursive algorithm by Mallat [35], a GG pdf has been 
used to model image wavelet coefficients and several other 
authors use the GG distribution for many image process-
ing tasks involving wavelets. A zero-mean GG pdf depends 
only on two parameters and is characterized by being sym-
metric around the mean. Its expression is given by

 ( ) ( / )
( , )

,p x e2 1
[ ( , ) | |]

X
x

$
$

o

o h o v

C
= $h o v- o< F  (29)
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where C is the Gamma function, v is the standard devia-
tion of the distribution, v  is a shape factor, and ( , )h o v  is 
given by

 ( , ) ( / )
( / )

.1
1
3 /1 2

h o v v o

o

C

C
= < F  (30)

The GG distribution is reasonably simple, since the use of 
only two parameters allows different levels of “peakedness” 
to be achieved. As particular cases, the GG pdf includes 
both the Laplacian and the Gaussian pdfs, for 1o =  and 

,2o =  respectively. A plot of GG pdf curves for different 
values of o is shown in Fig. 8.

Substituting (29) into (28) yields
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 (31)

In [82], a method for the estimation of the parameters 
relative to the GG model, i.e., the standard deviation v 
and the shape factor v  of the distributions relative to 

and ,W Wf v  is given. The estimation of the parameters 
is based on the computation of some moments of the 
observable variables g  and .Wg  In the implementation 

of the filters, these moments are substituted by spatial 
averages. The solution of equation (31) is not known in a 
closed analytical form and a numerical optimized solu-
tion has been proposed in [82].

In Fig. 9, a set of curves plotting WMAP
ft  vs Wg  is given 

for particular values of the parameters of the GG model: in 
Fig. 9-(a), the curves refer to , ,2 1 2W W Wf v vv v o= = =  and 
to Wfo  varying from 0.4 to 2 with step 0.2; in Fig. 9-(b), the 
parameter Wvo  has been changed to 1.2 (the other param-
eters were not modified). Such curves define a remapping 
of the observed coefficients onto noise-free ones same as it 
is done by hard and soft-thresholding schemes commonly 
used for denoising signals affected by additive signal-
independent noise [67], [132]. It is important, however,  
to point out that for despeckling the wavelet coefficients 
are modified according to the multiplicative model of 
speckle and thus adaptively vary according to the locally 
estimated parameters.

MAP–LG filter—In [85], the empirical distribution 
of the shape factor of noise–free reflectivity coefficients 
has been investigated and an interesting behavior was 
noticed. For the lowest levels of decomposition, the shape 
factor is usually very close to one, whereas it tends to shift 
towards two in highest ones. The shape factor of signal–
dependent noise coefficients, instead, are mostly concen-
trated around the value two. These facts suggest directly 
introducing a combination of Laplacian and Gaussian 
pdfs into the modeling: this yields some computational 
advantages with respect to using the more general GG 
pdf. In fact, by assuming that the wavelet coefficients Wv  
and Wf  follow a zero-mean Gaussian and zero–mean 
Laplacian distribution, respectively, yields the following 
closed form estimator [133]:

 

arg ( )
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 (32)

where / .2 W W
2

v ft v v=  Thus, the estimator is equivalent to 
a soft-thresholding algorithm with a locally adaptive thresh-
old. Eq. (32) has been originally devised in [134] and used 
for processing ultrasound images with decimated wavelets.

c. AdjuStmentS foR SAR imAge heteRogeneity
In several despeckling methods, different filtering strate-
gies are used according to the texture content of the scene. 
In [51], [54], the coefficient of variation is used to dis-
criminate among homogeneous, textured and highly het-
erogeneous (or point target) areas. Pixel belonging to the 
first two classes are filtered by using simple averaging and  
C-MAP, or another local-statistics filter, whereas no fil-
tering is attempted on point targets. A strongly scattering 
target, however, is concentrated in space, but after wave-
let analysis its response will be somewhat spread because 
of the finite support of the wavelet function. Thus, also 
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FIgURe 9. Mapping of the WMAP
ft  estimates vs the observed :Wg  in 
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step 0.2; in (b) .1 2Wvo =  (the other parameters are unchanged).
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UDWT coefficients around a point target one pixel wide 
will depend on the target response, unlike what happens 
in space. In the past, this was perhaps the main objection 
towards a systematic use of the wavelet transform to ana-
lyze SAR images. Starting from [83] a preprocessing step 
of point targets, and thicker strong scatterers in general, 
was devised. Targets are detected as upper percentiles of 
the image histogram, removed from the image and stored. 
Void pixels are smoothly filled by interpolating their 
neighbors. Then, wavelet analysis is performed. After syn-
thesis of the despeckled image, point targets are reinserted 
in their original places.

The leftover two classes, namely homogeneous and 
textured, can be handled also by multiresolution methods 
to improve their performance. In [83], UDWT subbands 
are segmented into texture classes according to an energy 
index computed in the UDWT domain. Several classes of 
texture, from textureless onward, can be recognized. The 
wavelet coefficient of each segment on each subband are 
supposed to have a unique shape factor of the GG func-
tion, while the variance is calculated for each coefficient. 
Thus, the calculation of the v  is more accurate than in [82], 
thanks to the more consistent sample size. In [85], the seg-
mentation has been extended to the MAP-LG filter. This 

(a) (b)

(c) (d)

FIgURe 10. Examples of the application of Bayesian estimators in the UDWT domain: (a) original COSMO-SkyMed 4-look StripMap image, 
filtered versions obtained with (b) LMMSE, (c) MAP-GG with segmentation (GG–MAP–S), and (d) MAP-LG with classification (LG–MAP–C).
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time there are no parameters to estimate on segments, as 
for GG. Thus, a classified approach consists of switching 
among different estimators, e.g., MAP-LG and LMMSE, 
depending on the degree of texture of each segment. In 
Fig. 10-(c) and 10-(d), the results of MAP-GG and MAP-LG 
estimators, the former with segmentation (GG–MAP–S), 
the latter with classification (LG–MAP–C), on the image 
in Fig. 10-(a) are shown.

A segmentation based approach seems also a natural 
solution to changes in the speckle model occurring as 
the spatial resolution of single-look products increases. 
This happens for very high resolution (VHR) new genera-
tion SAR systems, especially with Spotlight products. As 
the size of the elementary resolution cell decreases, the 
assumption of distributed scatterers is less and less veri-
fied. In substance, what is homogeneous at 10 m scale 
may no longer be so at 1 m. So, we expect that VHR SAR 
images are more textured and contain more persistent 
scatterers, and less homogeneous regions, than earlier 
products. A viable solution with segmented processing in 
UDWT domain is introducing corrective factors for under 
smoothing in textured segments, depending on the class 
of texture energy measured in the UDWT domain, analo-
gously to what proposed in [78].

VI. NON-LOCAL MeAN FILTeRINg
The NL mean (NLM) filter proposed by Buades et al. in 
[110] is based on the simple idea of estimating the noise 
free image as a weighted average of noisy pixels

 ( )
( , )

( , ) ( )
f n

w n m

w n m g m

m

m=t /
/

, (33)

where the weights ,w n m^ h take into account the “simi-
larity” between pixels g n^ h and .g m^ h  The key idea of 
the NLM filter is that the weights ,w n m^ h are based on 
the Euclidean distance between local patches centered at 
g n^ h and ,g m^ h  according to

 ( , ) ( ) ( )expw n m h g n k g m k1
k

k

2a= - + - +c m/ , (34)

where ka ’s define a Gaussian window and h  controls the 
decay of the exponential function.

The NLM filter obtains a very good performance in the 
presence of additive white Gaussian noise, since the Euclid-
ean distance is a natural similarity measure for this kind of 
model. However, in the case of SAR images, the weights have 
to be generalized to the case of multiplicative and non-Gauss-
ian speckle. It is also interesting to combine the effectiveness 
of the NL principle with the benefits of the sparse representa-
tion offered by the wavelet transform. In the following, we 
will review two SAR despeckling filters based on the NL prin-
ciple in the spatial [108] and in the wavelet domain [109].

A. pRoBABiliStic pAtch-BASed filteR
The probabilistic patch-based (PPB) filter, proposed by 
Deledalle et al. in [108], extends the NLM filter to the 
domain of SAR images by exploiting its connections to 
the weighted maximum likelihood extimator (WMLE). 
Namely, under the WMLE principle the noise-free image 
can be estimated as the value maximizing a weighted likeli-
hood function of the observed data

 ( ) ( , ) ( ( ) ) .arg max logf n w n m p g m f
mf

=t /  (35)

(a) (b)

FIgURe 11. Examples of the application of (a) PPB filter and (b) SAR–BM3D filter to the 4-look COSMO-SkyMed image in Fig. 10-(a).
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In the above equation, the weights ( , )w n m  can be thought of 
as a measure indicating to what extent a pixel at position m  
has the same distribution as the reference pixel at position .n

The definition of the weights ( , )w n m  is the key problem 
of the WMLE approach. In the PPB filter, this problem is 
solved by expressing the weights as the probability, given 
the observed image ,g  that two patches centered at posi-
tions n and m can be modeled by the same distribution. By 
assuming the independence of the pixels of the patches, the 
weights can be formally expressed as

 
( , ) ( ( ) ( ) ( ),

( )) ,

w n m p f n k f m k g n k

g m k /

k

h1

= + = + +

+

%
 (36)

where k  varies over the image patch and h  is a decay param-
eter. According to a Bayesian framework, without knowl-
edge of the prior probabilities ( ( ) ( )),p f n k f m k+ = +  
the posterior probabilities in equation (36) can be 
assumed proportional to the likelihood ( ( ),p g n k+

( ) ( ) ( )).g m k f n k f m k+ + = +  This permits to adapt the 
weights of the PPB filter to several image distributions. For 
the case of SAR images, by assuming that pixel amplitudes 
a g=  are modeled as independent and identically dis-
tributed according to a Nakagami-Rayleigh distribution, 
the PPB weights can be derived as [108]

 ( , ) ( )
( )

( )
( )

exp logw n m h a m k
a n k

a n k
a m k1

k
= -

+

+
+

+

+d n= G/  (37)

and the despeckled image can be obtained according to the 
WMLE as

 ( )
( , )

( , ) ( )
.f n

w n m

w n m a m

m

m
2

=t /
/

 (38)

In [108], the model is further improved by letting the 
probabilities in (36) depend also on a previous estimate 
of the noise-free image. This leads to an iterative filtering 
approach, in which the weights are updated at each itera-
tion according to the previous result of the filter. For the 
detailed derivation of the iterative PPB filter, the interested 
reader is referred to [108].

An example of the application of the PPB filter to the 
COSMO-SkyMed image in Fig. 10-(a) is given in Fig. 11-(a). 
As it appears, PPB filtering overly smooths textures, if any, 
and tries to achieve a hard segmentation of the scene also 
in the presence of softly switching classes.

B. SAR Block mAtching 3-d filteR
The SAR block matching 3-D (SAR-BM3D) filter, proposed 
by Parrilli et al. in [109], is a SAR-oriented version of the 
block matching 3-D filter [111], which applies the NL prin-
ciple in combination with a wavelet representation. The 
key idea of the BM3D filter is to apply the NL principle for 
collecting groups of similar image patches, and to compute 

a wavelet decomposition of the resulting 3-D blocks. The 
NL grouping of similar patches is expected to form a highly 
correlated 3-D signal, which will likely have a very sparse 
representation in the wavelet domain, leading to an effec-
tive separation of noise–free and noisy coefficients.

The processing flow of the BM3D filter can be summa-
rized by the following steps: 1) for each reference patch in 
the observed image, collect the most similar patches accord-
ing to a Euclidean distance criterion, and form a 3-D group; 
2) apply 3-D wavelet transform, denoising of wavelet coef-
ficients, and inverse transform; 3) return all filtered patches 
to their original positions, and combine them using suitable 
weights. It is worth noting that the above approach can be 
seen as a collaborative filtering: in general, the patches will 
be highly overlapped, so that each filtered pixel will result 
from the combination of several filtered patches. In [111], 
the final BM3D filter is obtained by repeating the above 
processing flow in a two iteration procedure. In the first 
step, wavelet domain denoising is achieved by simple hard-
thresholding, in order to yield a coarsely denoised image. 
The second step uses the denoised image obtained after 
the first step to improve the 3-D grouping accuracy, and 
replaces hard-thresholding with Wiener filtering, where the 
energy spectrum of the noise-free image is estimated form 
the coarsely denoised image.

In order to adapt the BM3D filter to the case of SAR 
images, the SAR-BM3D filter considers two main modifi-
cations: 1) the similarity measure between patches is com-
puted according to (37), following the same approach as in 
[108]; hard-thresholding and Wiener filtering are replaced 
with an LMMSE estimator [78] based on the additive sig-
nal-dependent noise model in (25). According to the two 
step procedure of the original BM3D filter, in the first step 
the LMMSE estimator is based only on the observed image 
g  and the filtered wavelet coefficients are obtained accord-
ing to equation (27), whereas in the second step it approxi-
mates the moments of the noise-free image according to the 
output of the first step, and the filtered wavelet coefficients 
are obtained according to
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where W ,f 1t  are the noise-free wavelet coefficients estimated 
at the first step and the variance of the wavelet coefficients 
of the signal-dependent noise is obtained as

 | | ( ) ( )G W k W k1
,W g f

k G

2
1

2
vv = -

!

t7 A/  (40)

with G  denoting the set of wavelet coefficients belonging 
to a 3-D group. The final despeckled image is obtained as 
a weighted average of the overlapped denoised patches, 
where the weights for each patch are inversely proportional 
to the corresponding value of W

2
vv  [109].

An example of the application of the SAR-BM3D filter to 
the COSMO-SkyMed image in Fig. 10-(a) is given in Fig. 11-(b).
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VII. TOTAL VARIATION RegULARIZATION
Image denoising through TV regularization can be defined 
as the solution of a minimization problem

 ( , )arg minf J f g
f

=t , (41)

where the cost function to be optimized can be expressed as

 ( , ) ( ) ( , ) .J f g f f gmU W= +  (42)

In the above equation, ( )fU  denotes a regularization term 
including prior information about the noise-free image ,f
whereas ( , )f gW  denotes a data fidelity term.

The regularization term is usually defined as the TV 
norm of the noise-free image, i.e.

 ( ) ( )f f nn dU =/ , (43)

where ( )f nd  denotes the magnitude of the gradient of f  
and can be computed as

 ( ) ( ) ( )f n f n f nx y
2 2d = + , (44)

where ( )f nx  and ( )f ny  denote horizontal and vertical 
first order differences evaluated at pixel n , respectively. 
The minimization of the TV norm tends to promote a 
piecewise smooth image, which is usually a good prior 
for natural images, since it preserves important structures 
like edges.

The data fidelity term can be defined according to sev-
eral different approaches. A popular approach is to set the 
data fidelity term equal to the negative of the log-likelihood 
of f  given the observed image ,g  that is

 ( , ) ( ) .logf g p f gW =-  (45)

If the TV norm is interpreted as a negative log-prior term, 
i.e., ( ) ( )logf p fU =-  it is evident that the solution of the 
problem in (41) is equivalent to the MAP estimate of .f

A. deSpeckling uSing tv RegulARizAtion
When it comes to despeckling, the main problem is adapt-
ing the TV framework to the multiplicative noise model. In 
[119], the above problem is tackled in the original intensity 
domain by assuming a Gamma-distributed speckle, which 
in turn implies a Gamma ( ).p f g  The resulting problem 
can be expressed as

 ( ) ( ) ( )
( )

.arg min logf f n f n f n
g n

f n n
d m= + +t d n/ /  (46)

Despite its elegance, the above approach suffers from the 
fact that the functional is convex only for .f g0 2< <  In 
order to obtain a convex problem, several authors have 
considered the logarithmic domain. A simple solution is to 
keep the same data fidelity term as in (46), but to replace f  
by logf f=l  in the regularization term [120], which yields

 ( ) ( ) ( ) .arg minf f n f n g n e ( )

f n

f n

n
d m= + + -l l l

l

lt _ i/ /  (47)

Another natural solution is to consider a quadratic data 
fidelity term [117], [120], which yields

 ( ) ( ) ( ) .arg minf f n f n g n
nn

2

f
d m= + -l l l l

l

t ^ h//  (48)

Interestingly, the above solution is still equivalent to a MAP 
estimate when we can approximate the logarithmically 
transformed speckle as Gaussian.

All of the above approaches consider solutions in 
the spatial domain. In [122], Durand et al. propose to 
combine the advantages of the TV regularization frame-
work with those offered by a sparse representation. The 
proposed solution consists in computing the data fidel-
ity term in the domain of a redundant multiscale rep-
resentation. The rationale is that relevant structures in 
the image are more effectively preserved in a multiscale 
representation, while a TV prior helps in removing char-
acteristic artifacts caused by wavelet thresholding. In 
order to limit the effects of noisy wavelet coefficients, 
the authors of [122] propose to compute the data fidel-
ity term on a hard-thresholded version of the observed 
coefficients, where the coefficients are obtained by apply-
ing a curvelet transform to the log-transformed intensity 
image. The authors also suggest using an under optimal 
threshold, so as to preserve as much as possible curve-
let coefficients relevant to edges and textures. In order to 
take into account the long tailed distribution of curvelet 
coefficients, the data fidelity term is defined as the mean 
absolute error between the despeckled coefficients and 
the hard-thresholded coefficients. The final optimization 
problem can be expressed as

FIgURe 12. Example of the application of the TV filter in [122] to the 
4-look COSMO-SkyMed image in Fig. 10-(a).
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t /
/  (49)

where [ ]H $  denotes the hard-thresholding operator. 
Since the above estimator is prone to bias, the authors 
of [122] propose to compute the despeckled image as 

( ')( ( )/ ),expf f L1 21z= +t t  where ( )L1z  is the first-order 
polygamma function and represents the variance of L-look 
log-transformed speckle [33].

In general, the solution of the aforementioned optimi-
zation problems requires a suitable minimization scheme. 
According to the properties of the functional to be mini-
mized, several schemes can be used, including gradient pro-
jection [118], iterative splitting methods [122], [123], inverse 
scale space flow [120]. The details of such minimization 
schemes are beyond the scope of this tutorial and the related 
literature is really vast. The interested reader is referred to 
the above cited papers and the references therein.

An example of the application of the filter proposed in 
[122] to the COSMO-SkyMed image in Fig. 10-(a) is given 
in Fig. 12.

VIII. ASSeSSMeNT OF DeSPeCKLINg FILTeRS
One of the most challenging tasks is the validation and 
quality assessment of data processed for speckle reduction. 
The most evident problem is that the noise-free reflec-
tivity that we wish to estimate is unknown, so that no 
comparison can be carried out between the output of the 
despeckling process and the actual ground truth. Another 
important issue is the relationship between quality and 
fidelity of despeckled SAR data. Like many other denoising 
frameworks, the quality of a processed SAR image is usu-
ally evaluated in terms of blurring of homogeneous areas, 
i.e., suppression of speckle noise, and detail preservation 
in heterogeneous areas. Nonetheless, in incoherent SAR 
imagery, a fundamental part of the information is repre-
sented by the relative values of the reflectivity of the tar-
gets, which allow measurements and inferences on the tar-
get scene. Consequently, the radiometric preservation of 
the signal is an important requirement: a good despeckling 
filter should not introduce bias on the reflectivity.

An immediate and subjective approach for quality 
assessment is represented by visual inspection of filtered 
images. Visual inspection permits detection of the main 
human–visible features that characterize the behavior of a 
despeckling filter. Such features include edge preservation 
capability, degree of blur, point target preservation, as well 
as structural artifacts which are hardly detected by objec-
tive and direct measurements. On the other hand, visual 
assessment does not allow either quantitative comparisons 
between the performances of different despeckling filters 
to be made or the bias introduced by the filter to be effec-
tively estimated.

In order to overcome the limitations of visual com-
parison, several objective performance indexes have been 

proposed in the literature for the quality assessment of 
despeckling filters. They can be mainly divided into two 
classes: with–reference and without–reference indexes.

With–reference indexes are commonly used in the 
image denoising field. Their use implies that the noise–
free, or reference, image is known. A typical approach con-
sists in choosing a reference image, either optical or syn-
thetic, representing the actual reflectivity or ground–truth, 
and creating a synthetically degraded version according to 
a given signal model. These indexes permit a quantitative 
and objective comparison between the performances of 
different filters, which are expected to perform similarly 
on real SAR images. Moreover, insights on filters behav-
ior on specific image features, like edge preservation and 
homogeneous areas smoothing, can be easily highlighted 
by choosing appropriate reference images and even syn-
thetic–generated patterns. Unfortunately, experimental 
results carried out on simulated SAR images often are not 
sufficient to infer the performances of despeckling filters 
on real SAR images, since the synthetically speckled image 
may not be consistent with the actual SAR image forma-
tion and acquisition processes. Furthermore, the statisti-
cal properties of the chosen reference image and of a real 
ground–truth reflectivity can substantially differ.

On the contrary, without–reference indexes do not trust 
on the knowledge of the ground–truth. They are uniquely 
based on specific statistical hypotheses on the signal model. 
Since the signal model is strongly dependent on the degree 
of scene heterogeneity, a supervised selection of the most 
appropriate areas for the computation of a specific index, 
e.g., homogeneous areas, may be required.

In the following, the most used indexes belonging to 
both the above mentioned classes are presented. Note that 
the statistical operator of expectation [ ]E $  and the moments 
of the involved variables, such as the variance and covari-
ance, here denoted as Var[ ]$  and [ ]Cov $  for the sake of sim-
plicity, should be replaced by their empirical versions based 
on spatial averages when evaluating the indexes.

A. With–RefeRence indexeS
The mean square error (MSE), or Euclidean distance, between 
the ground–truth f  and the despeckled image ,ft  and other 
measures derived from the MSE, like the signal–to–noise 
ratio (SNR), the peak signal–to–noise ratio (PSNR) and the 
energy signal-to-noise ratio (ESNR), have been widely used 
for the quality assessment of both denoising and despeck-
ling [33], [57], [76]. Unlike the case of additive signal–inde-
pendent noise, in the presence of signal–dependent noise 
the MSE is strongly influenced by the average signal level of 
the ground truth. Consequently, a quantitative evaluation 
of despeckling filters using this kind of indexes is strongly 
dependent on the content of the ground–truth image, even 
though performance hierarchy is usually preserved across 
different images.

MSE–based measurements are useful to obtain a global 
performance assessment on the whole image, but usually 
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they yields little information about the preservation of 
specific features, for which other indexes can be used. 
The mean structural similarity index measurement (MSSIM) 
[135], proposed for the general denoising framework and 
adopted also in the context of despeckling, underlines 
the perceived changes in structural information after the 
filtering process. MSSIM takes values over the interval [0, 
1], where 0 and 1 indicate no structural similarity and 
perfect similarity, respectively. As demonstrated in [135], 
MSSIM can substantially differ between images having 
very similar MSE values.

The edge correlation (EC) index has been proposed as 
a measure of edge preservation for despeckling of echo-
graphic images [136] and has been extended to the SAR field 
[72]; it is defined as the correlation coefficient ( EC )0 1# #  
between high pass versions of the original and despeckled 
images. This index may be distorted by possible residual 
speckle noise that is enhanced by the high pass filtering.

Another index of edge preservation is Pratt’s figure of 
merit (FOM), which has been used in [96] for the quality 
assessment of despeckled SAR and ultrasound images. 
FOM is defined on a local patch of the image containing 
an edge. The more similar the edge maps, the closer to zero 
the FOM values. Consequently, this index is strictly related 
to the map edge detector that is used, which is crucial espe-
cially for the despeckled image when a residual noise com-
ponent is present.

Table 1 summarizes the above mentioned indexes.
A synthetically speckled images has been produced 

starting from a 512 512#  digitized aerial photograph of 
San Francisco. The original speckle-free image, regarded 
as an amplitude format, has been squared and multiplied 
by an exponentially distributed fading term, in order to 
simulate a single-look SAR image in intensity format. 
The simulated speckle is spatially uncorrelated and fully 

developed. The noisy intensity image, together with all 
filtered intensity versions, has been square rooted, for 
displaying convenience, and is shown together with the 
8-bit original, regarded as an amplitude image, in Fig. 
13-(b) and Fig. 13-(a), respectively.

The filters compared in this subsection are representa-
tive of different approaches to despeckling described in 
this paper: Kuan [52] and C–MAP [54] as classical spatial 
filters; GG–MAP–S [83] and LG–MAP–C [85] as Bayes-
ian filters in the wavelet domain (input format is square 
root of intensity [137]); Probability Patch–Based (PPB) 
[108] and SAR–BM3D [109] as non–local mean filters 
in the spatial and wavelet domain; L1 Fidelity on Frame 
Coefficients (L1–FFC) [122] as a TV-based filter. Visual 
comparisons of the results obtained with the same filters 
can be made observing Fig. 13. What immediately stands 
out is that local spatial filter (Kuan and C–MAP) are 
unable to clean the noisy background. A residual inho-
mogeneity, like a coarse granular texture, is noticeable 
especially on the sea. This effect is thoroughly missing 
in wavelet-domain filters, as well as in nonlocal-mean 
and TV filters. Preprocessing of point targets was disabled 
in wavelet schemes, because the simulated speckle is  
fully developed.

Fig. 14 shows the performance indexes obtained by 
means of the test despeckling filters.

B. Without–RefeRence indexeS
As previously stated, without–reference indexes do not rely 
on the complete knowledge of the true reflectivity, but are 
based on the statistical model of the SAR signal as well as 
on some simple assumptions on the degree of heterogene-
ity of the underlying scene.

The equivalent number of look (ENL) [46] is an index 
suitable for evaluating the level of smoothing in  

index note
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table 1. liSt oF coMMonlY uSed With-reFerence indexeS For eValuating perForManceS  
oF deSpecKling algorithMS.
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homogeneous areas, that is where the scene variation 
is supposed to be negligible with respect to speckle 
noise fluctuations. The ENL of the original SAR image 
is related to the nominal number of looks through the 
autocorrelation function of speckle [142], whereas it 
increases after the despeckling stage according to the 
smoothing capability of the filter. 

Other typical measures can be computed from the ratio 
image ,r  defined as the point–by–point ratio between the 
noisy and the filtered image [4]

 ( )
( )

( )
.r n

f n

g n
= t  (50)

The ratio image is a useful information in both homoge-
neous and heterogeneous scenes, wherever the fully devel-
oped speckle model holds. It represents the noise pattern 
removed by the despeckling filter that, according to the 
model, should be C-distributed. An ideal filter should 
result in a pure random pattern, whereas poor speckle noise 
removal causes structural information, such as borders and 
edges, to be clearly visible in the ratio image. The mean and 

(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

FIgURe 13. Results on a synthetically speckled image: (a) noise-free reference, (b) noisy (1-look), (c) Kuan, (d) C-MAP, (e) GG–MAP–S,  
(f) LG–MAP–C, (g) PPB, (h) SAR–BM3D, and (i) L1–FFC.
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the variance of ,r  that is [ ]E rrn =  and Var[ ],rr
2v =  should 

be as close as possible to the respective theoretical statisti-
cal moments of the speckle noise process. For this reason, 
they are often used as indexes of bias and speckle power 
suppression, respectively. A measure of bias is also given by 
the B index [30], in which a value close to zero indicates an 
unbiased estimation.

Under the hypothesis of multiplicative speckle noise, a 
measure of texture preservation on heterogeneous areas is 
given by the comparison between the coefficient of variation 
calculated on the despeckled image, namely ,C ft  and its the 
expected theoretical value on the noise-free image, Cf  [20]. 
Intuitively, a poor preservation of details yields ,C C>f ft  
while the introduction of impairments leads to .C C<f ft  

Since the speckle model does not hold in the presence 
of persistent scatterers or point targets, despeckling filters 
should keep their values unchanged. A point target is usu-
ally characterized by a cluster of pixels whose reflectivity 
values are much higher, even some orders of magnitude, 
than the mean reflectivity of the surrounding scene. The 
target–to–clutter ratio (TCR) [138], [139] aims at measuring 
the relative value of strong scatterers with respect to the val-
ues of the surrounding pixels. TCR values computed before 
and after despeckling are indicative about how much a fil-
ter preserves the radiometric properties in the patch.

Table 2 summarizes the most commonly used without-
reference indexes for evaluating despeckling algorithms 
performance. Fig. 15 shows the without–reference indexes 
obtained on the image in Fig. 10-(a). The indexes have been 
computed for the original 1024 # 1024 image and for a  
512 # 512 4–look version, generated by means of spatial 
multilooking (2 # 2 average).

c. diScuSSion
The computational complexities of the most relevant fil-
ters among those reviewed raises an interesting concern. 
Early spatial filters are nowadays real-time (less than 1 s 
to process a 1024 # 1024 scene on a standard platform). 
Wavelet-based methods are at least ten times longer to run, 
up to one hundred times for GG–MAP–S, which requires 
numerical calculation of the maximum of a function [83], 
unlike LMMSE and LG–MAP–C, which admit closed form 

solutions. For all multiresolution methods, biorthogonal 
9/7 wavelet filters and four levels of decomposition (cor-
responding to a baseband approximation having 4 2564 =

nominal looks) have been used. Biorthogonal filters are 
preferred to orthogonal filters in image processing applica-
tions because they allow filters of different lengths, and 
hence of spectral selectivity, to be available for the low pass 
(9 coeffs.) and high pass (7 coeffs.) analyses. Conversely, 
NL filtering approaches, in either space (PPB) or wavelet 
(SAR–BM3D) domain, have a significantly higher compu-
tational cost, mainly because of iterated processing, with 
recalculation of statistics after each step. Eventually, the 
TV-based filter examined (L1–FFC) is comparable with NL 
filters. The numbers of iterations are those recommended 
by the respective authors in their implementations. Table 3 
summarizes the complexity of despeckling algorithms.

A key point in the despeckling of SAR images is the 
extent to which models assumed for the signal or the 
noise match the actual statistics of the data. By observ-
ing the results on 1-look data in Fig. 15, it is quite evident 
that all filters yield a biased outcome ,B1 1< >rn^ h and 
a limited speckle removal capability .1<r

2v^ h  Both these 

Noisy Kuan Gamma-MAP GG-MAP-S
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FIgURe 14. With-reference indexes computed for the image in Fig. 13-(b), with the image Fig. 13-(a) as speckle–free reflectivity.
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effects occur because all filters do not take into account that 
speckle is spatially autocorrelated in real single–look SAR 
images [30], for the following reasons: 1) oversampling of 
SAR raw data with respect to the Nyquist rate given by twice 
the chirp bandwidth; 2) frequency windowing applied 
when the raw data are focused and aimed at improving the 
response of targets, avoiding Gibbs’ effects. As reported in 
Fig. 15 for 4-looks data, multilooking allows all filters to 
obtain values of rn  and r

2v  closer to the ideal ones. This 
mainly happens because the multilooking process reduces 
the speckle correlation; unfortunately, it also halves the 
image resolution in both range and azimuth directions.

Very few despeckling filters that specifically consider 
the speckle correlation have been proposed in the literature 
(e.g., [30]). Recently, a blind speckle decorrelation method 
to be applied to SLC images has been proposed [31], [141] 
to enhance the performances of existing despeckling filters. 
The idea is estimating the SAR system frequency response 
on the original SLC image in order to compensate its effect 
by an inverse filtering (whitening stage), so that an SLC image 
having uncorrelated speckle noise, but preserving the radio-
metric features, is produced. In [140], it has been shown 

that the introduction of the whitening stage allows notice-
able performance gains for filters based on the uncorrelated 
speckle model. A visual and numerical example on a single–
look COSMO–SkyMed image is proposed in Fig. 16. The cor-
relation coefficient t dramatically decreases after the whit-
ening stage. MAP–GG–S outperforms its own results when 
it is applied to the uncorrelated speckled image. The problem 
of speckle correlation occurs only for one-look data, because 
the process of multilooking, equivalent to low pass filtering 
and decimation, lowers the correlation coefficient (CC) of 
speckle from about 35% to less than 10% [142].

A visual analysis of the image details in Fig. 16 highlights 
that wavelet despeckling suffers from the presence of struc-
tured artifacts mainly located around edges, referred to as 
glitches, that are due, in order of importance, to: 1) speckle 
correlation, 2) input image format (amplitude is preferable 
to intensity, because yields a more accurate MAP estimation 
in UDWT domain [143]), 3) type of wavelet filter (the short-
est filters of Haar transform [89] produce the least noticeable 
artifacts). Also the type of decomposition (à trous wavelet 
(ATWT) [37] rather than UDWT) is a topic worth being 
investigated, also because ATWT accommodates all details 

Filter Kuan (7 #  7) C–MAP (7 #  7) UDWT LMMSE LG–MAP–C GG–MAP–S PPB SAR–BM3D L1–FFC

Complexity Very low Very low Low Low Medium High High High

table 3. coMputational coMplexitY oF deSpecKling MethodS. betWeen tWo conSecutiVe gradeS there iS 
approxiMatelY one order oF Magnitude. So, ppb iS about 1000 tiMeS SloWer than Kuan’S Filter, on the 
SaMe coMputing platForM.
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FIgURe 15. Without-reference indexes computed for different despeckling algorithms for the image in Fig. 10-(a). (a) One-look image (theoreti-
cal value .C 0 355f = ); (b) 4-look version of the same image (theoretical value .C 0 544f = ).
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of one scale in a unique plane; thus the number of coeffi-
cients to be despeckled, and hence computing times, would 
be three times lower. However, the adaptivity with orienta-
tion featured by UDWT would be lost with ATWT.

The assessment of the performances of despeckling fil-
ters on real SAR data is often problematic due to the lack 
of with–reference indexes. In order to overcome such prob-
lems, a possible idea is to use electromagnetic SAR image 
generators [23]. Such simulators are based on more physi-
cal–oriented models, which consider the propagation of the 
electromagnetic wave and its interaction with targets and 
surfaces, and usually require a more detailed parametric 
description of the target scene with respect to the models 
used in signal processing applications. In [22], the authors 
use an electromagnetic SAR image generator to simulate 
several independent acquisitions of the same scene. If the 
number of acquisitions is sufficiently high, their average 
can be considered as a good approximation of the noise–
free reflectivity and can be used to compute with–reference 
indexes. The advantage of this technique is that the simu-
lated images do not necessarily obey the fully developed 
speckle model and provide insights on the behavior of the 
filter on point targets and highly heterogeneous areas. On 
the other hand, the underlying reflectivity follows a syn-
thetically generated pattern, which may not be fully repre-
sentative of the reflectivity usually encountered in real SAR 
images, especially in complex scenes, due to the ideal mod-
els of objects fed to the simulator.

Another viable approach to devise a fully automatic 
method for quality assessment of despeckled SAR images 
was recently proposed by the authors [144]. The rationale of 
the new approach is that any structural perturbation intro-
duced by despeckling, e.g., a local bias of mean or the blur 
of a sharp edge or the suppression of a point target, may 
be regarded either as the introduction of a new structure 
or as the suppression of an existing one. Conversely, plain 
removal of random noise does not change structures in the 
image. Structures are identified as clusters in the normalized 
scatterplot of original to filtered image. Ideal filtering should 
produce clusters all aligned along the main diagonal. In prac-

tice clusters are moved far from the diagonal. Cluster centers 
are detected through the mean shift algorithm. A structural 
change feature is defined at each pixel from the position and 
population of off-diagonal clusters [145]. Such a feature may 
be regarded as a spatial map of filtering inaccuracies. A pre-
liminary validation has been carried out on simulated SAR 
images, with a good correlation between feature and objec-
tive filtering error. In experiments on COSMO-SkyMed 
images, the automatic ranking of filters matches the subjec-
tive trials of experts. The proposed feature detects filtering 
impairments but is unable to measure the overall effective-
ness of filtering. Therefore, its use must be coupled with 
another index measuring the effectiveness of cleaning, e.g., 
ENL, regardless of its accuracy.

Ix. CONCLUSIONS AND PeRSPeCTIVeS
This tutorial has demonstrated that despeckling of SAR 
images takes into account several issues related to signal and 
noise modeling, signal representation, estimation theory and 
quality assessment. Concerning Bayesian estimation, start-
ing from Lee filter, local-window adaptive filtering has been 
progressively enhanced, up to a saturation of performances, 
due to the trade off of using windows small enough to retain 
edges textures and fine details and large enough to allow a 
consistent and confident statistical estimate to be achieved.

In the last two decades, the introduction of multi-
resolution analysis has been found to boost despeckling 
algorithms performances. Key points of wavelet-based 
despeckling is the modeling of the reflectivity and of the sig-
nal-dependent noise in the wavelet domain and the choice 
of the estimation criterion to achieve the noise-free wavelet 
coefficients. While several authors have chosen overfitting 
models sacrificing space adaptivity, others have tried to 
keep the advantages of an adaptivity in both scale and space 
by using pdfs with few parameters to be estimated locally on 
subbands/frames. A preprocessing step of point targets that 
must retain their radiometry after despeckling and a seg-
mented approach, in which sample statistics are calculated 
on homogeneous segments, complete Bayesian despeckling 
in wavelet domain.

(a) (b) (c) (d)

FIgURe 16. (a) Original one-look COSMO-SkyMed image ( .0 29-t ); (b) MAP–GG–S [83] of original (ENL . , . , .27 90 0 940 0 702r r
2n v= = = ); 

(c) whitened [140] ( .0 05-t ); (d) MAP–GG–S of whitened (ENL . , . , .142 29 0 997 0 936r r
2n v= = = ). t  is the CC of speckle measured on the 

complex image [29]; ENL, rn  and r
2v  are calculated on a homogeneous patch after despeckling.
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As to non-Bayesian approaches, Lee’s sigma filter has 
evolved into bilateral filtering, which has possibly inspired 
nonlocal filtering, excellent examples of which are found 
both in spatial and in wavelet domains. In parallel, total 
variation has emerged as a powerful regularization tech-
nique that can be specialized to the signal dependent noise 
model and allows constraints to be set on several math-
ematical properties of the output image. As an example, 
setting a constraint on L1 norm definitely avoids glitches 
and other impairments. Presently, computational issues 
are mainly responsible for the moderate, yet increasing, 
popularity of such methods among users.

New horizons are undoubtedly in the direction of com-
pressed sensing, of which denoising seems to be one of the 
most promising application, notwithstanding objective 
difficulties come from the signal dependent, and hence 
nonstationary, noise model. Given the huge effort of 
researchers in this area, new developments and applica-
tions to despeckling are expected in a near future. Compu-
tational issues are also the main drawback of algorithms 
based on compressed sensing, with respect to spatial and 
wavelet domain Bayesian algorithms. The ever increasing 
diffusion of multiprocessor systems will be beneficial for 
methods that can be easily parallelized.
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